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1 Introduction

Increased demands imposed by global market pressures, environmental constraints
and energy costs have had a dramatic impact on the management and operation of
processing systems in many sectors including chemical and petrochemical produc-
tion plants. There is a signicant thrust in North American companies to integrate
science and technology into strategies for producing services and products for a
dynamic world market. These changes in operating culture have led to an empha-
sis on the development of integrated strategies that offer the flexibility required to
respond to economic pressures while satisfying emission restrictions and reducing
energy costs.

Most adaptive control schemes documented in the literature [15]-[17],[20] are
developed for regulation to known set-points or tracking known reference trajec-
tories. In some applications, however, the control objective could be to optimize
an objective function which can be a function of unknown parameters, or to select
the desired states to keep a performance function at its extremum value. Self-
optimizing control and extremum seeking control are two methods to handle these
kinds of optimization problems. The goal of self-optimizing control is to find a
set of controller variables which, when kept at constant set-points, indirectly lead
to near-optimal operation with acceptable loss [8][25][29]. The task of extremum
seeking is to find the operating set-points that maximize or minimize an objective
function. Since the early research work on extremum control in the 1920’s [21],
many successful applications of extremum control approaches have been reported,
for example, fuel flow control to achieve maximum pressure [32], combustion pro-
cess control for IC engines and gas furnaces [1][28], and anti-lock braking system
control [6].

Real-time optimization has seen a resurgence of interest in the recent years. The
traditional approach is the model-based repeated optimization where the model is
adapted using the available measurements and numerical optimization is performed
on the updated model [24][37]. An alternative approach to real-time optimization
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is known extremum seeking. Extremum seeking control allows the solution of
the optimization problem as a control problem with the advantages related to
sensitivity reduction and disturbance rejection.

In the past few years, Krstic et al. [18][19][33] have presented several schemes
for extremum-seeking control of nonlinear systems. First the system is perturbed
using an external excitation signal in order to numerically compute the gradient
[3][19]. The excitation can also be possibly generated internally by sliding mode
control [36]. Their framework allows the use of black-box objective functions with
the restriction that the objective value to be minimized is measured on line. Al-
though this technique has been proven useful for some applications [34], the lack of
guaranteed transient performance of the black-box schemes remains a significant
drawback in its application. Alternatively an adapted model of the system is used
for analytical evaluation of the gradient [9]. The extremum seeking framework
proposed by Guay and Zhang [9] assumes that the objective function is explicitly
known as a function of the system states and uncertain parameters from the sys-
tem dynamic equations. Parametric uncertainties make the on-line reconstruction
of the true cost impossible such that only an estimated value based on parameter
estimates is available. The control objective is to simultaneously identify and regu-
late the system to the lowest cost operating point, which depends on the uncertain
parameters. The main advantage of this approach is that one can guarantee some
degree of transient performance while achieving the optimization objectives when
a reasonable functional approximation of the objective function is available.

In this workshop, we provide an introduction to the problem of real-time opti-
mization (RTO) and control of nonlinear dynamical systems. Real-time optimiza-
tion (RTO) has become a leading technology for steady-state process optimization
in the process industry. RTO is used as a supervisory control technique to com-
pute, in real-time, optimal setpoints (with respect to e.g. cost, quality, etc...)
to be tracked by the process operation. Unfortunately, the objective of RTO,
which seeks to explore new operating regimes, cannot be done effectively without
an appropriate design of the enabling process control system. In this workshop,
we formalize the integrated design of RTO and control systems as a model-based
adaptive extremum-seeking control (AESC) task. The main idea advocated is to
integrate the competing tasks by using the objective function of the AESC system
to formulate a suitable Lyapunov function for the control system. The resulting
integrated control system achieves the steady-state optimization objectives with
guaranteed transient performance. AESC has proven to be an effective technol-
ogy in a number of areas including bioprocess control, chemical reactor control,
building systems control and fuel-cell control. We will provide a comprehensive
introduction to leading solutions of the AESC problem. In doing so, we establish
a number of new results in the area of nonlinear adaptive control, constrained
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system control, periodic system control, nonlinear model predictive control and
dynamic real-time optimization.

The workshop targets practicing control engineers, graduate students and re-
searchers interested in extremum-seeking control and real-time optimization of
dynamical systems.

2 Workshop Organization

The workshop is organized as follows:

1. Real-time optimization problem description with examples

• Chemical and bioreactor control problems

• Polymerization systems

• Building systems control

2. Real-time optimization using extremum-seeking control

• Extremum-seeking control: Performance enhancement and limitations

• Local versus global considerations

3. Model-based adaptive extremum-seeking control

• Real-time optimization of nonlinear systems

• Constrained RTO of nonlinear systems

• Input signal design for guaranteed convergence

• Improved performance in adaptive nonlinear systems

4. Dynamic real-time optimization

• Trajectory generation

• Periodic system control

• Predictive control

5. Real-time optimization control

• Bioreactor control

• Polymerization reactor control

• Building systems applications
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3 Worshop participants

• M. Guay, Queen’s University, Kingston, Ontario Canada

• D. Dochain, Université catholique de Louvain, Louvain-la-Neuve, Belgium
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